Molecular rotors with fluorinated bicyclo[2.2.2]octane rotators
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The creation of molecular objects that are capable of controlled motion under external stimuli rests one of the current most important tasks in nanochemistry and nanotechnology. A key approach to create such kind of molecular machine is to design a molecular system able to perform a transition into an ordered equilibrium state under external stimulation.[1] At the macroscopic level, the objective is for the system to perform useful work due to a controlled unidirectional motion of its molecular units with a single mechanical momentum. 
In this work, we present a way towards this goal by adding fluorine atoms, and thereby static dipole moments, to one or two of the three blades of a molecular rotator with a bicyclo[2.2.2]octane (BCO) core, otherwise known for its extremely high rotational frequency in a solid state.[2] It is anticipated  that adding fluorine atoms to BCO may allow a coupling of an external static electric field to the static dipoles on the rotators’ blades. 
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The fluorination of 1,4-bis(carboxyethyl)-2,5-oxo-bicyclo[2,2,2]octane (1) leads to formation of products F4 (2), F (3) and F2 (4). X-Ray crystallographic studies showed that all three targets crystallize in centrosymmetric space groups (monoclinic P 21/c for the product F and orthorhombic Pbca for F4 and F2), and possess a partial occupation of crystallographic positions of fluorine atoms (products F4 and F2), an indirect evidence of rotation of BCO in solid state.[2] 
Despite the presence of inversion centers, F4 and F2 have strong non-linear optical responses. The occurrence of second harmonic generation (SHG) has been explained as the consequence of switching the chirality of the rotors’ blades of the chiral BCO helixes and, therefore, the dynamical disappearance of inversion centers due to torsional interconversion of the configurations.[3]
Direct evidence for the motion of the rotators in the solid state and determination of their rotational frequencies will be obtained by spin-lattice relaxation experiments (1H T1). 
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